5.2 Properties of Functions

Identifying Functions

The set of first elements of a relation is called the **domain**. (Input or x-values)
The set of related second elements of a relation is called the **range**. (Output or y-values)
A **function** is a special type of relation where each element in the domain is associated with <u>only</u> one element in the range.

Example: List the domain and range for each relation. Is the relation a function?

Ex. 1 For each relation below, identify the domain and range of each relation and determine whether the relation is a function.

a) A relation that associates a number with a prime factor of the number: {(4,2), (6,2), (6,3), (8,2), (9,3)}

D: 24, 6, 8, 93

Not a function

R: 22,33

Describing Functions

Ex. 2 The table of values below shows the costs of student bus tickets, C dollars, for different number of tickets, n.

Number of tickets, n	Cost, C (\$)
1	1.75
2	3.50
3	5.25
4	7.00
5	8.75

a)	Expla	in w	hy	this	relation	is	a function	1.
----	-------	------	----	------	----------	----	------------	----

Each # Of tickets has one specific cost associated

c) State the domain and range.

D: 31,2,3,4,5} C: {1.75, 3.50, 5.25, 7.00, 8.75} b) Identify the independent and dependent variable. n - ind

Think: "Cost depends on number of tickets"

Using Function Notation to Determine Values $f'' \circ f'' \times f''$ Here are some examples of function notation: f(x), f(t), f(a), g(x), h(x), V(t)

Any function that can be written in two variables can be written in function notation.

For example: d = 4t + 9 can be written as d(t) = 4t + 9 where t represents an element of the **Domain**, and d(t) represents an element of the Range.

An equation such as y=3x-5 is usually written as f(x)=3x-5 in function notation.

Ex. 3 The equation C = 25n + 1000 represents the cost, C dollars for renting a ballroom for the Grad dinner and dance, where *n* is the number of people attending.

a) Describe the function. Write the equation in function notation.

((n)=25n+1000 The cost is an initial fee of \$1000 and then \$25 per person

c) Determine the value of *n* when C(n) = 5000. What does this number represent?

What does this number represent?
$$C(n) = 25 n + 1000$$

$$5000 = 25 n + 1000$$

$$4000 = 25 n$$

$$n = 160$$

$$160 people can attend when the cost is $5$$

b) Determine the value of C(100). What does this number represent?

C(100)=25(100)+1000 = \$3500

d) What values of *n* do not make sense as possible values of *n*?

negative as it represents number of people.