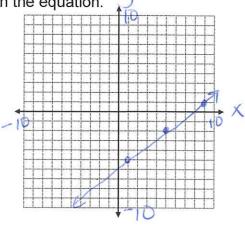
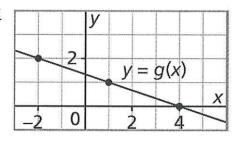
6.5 Slope-Point Form of the Equation for a Linear Function


Slope-Point Form:

The equation of a line that passes through $P(x_1, y_1)$ and has slope m is: $y - y_1 = m(x - x_1)$


Example: Given the equation $y + 2 = \frac{3}{4}(x - 5)$,

a) Describe the graph of the linear function.

Slope: 3/4 passes through the point (5,-2) b) Graph the equation.

Example:

a) Write an equation in slope-point form for this line.

Slope: - /3 point (1,1) $y-1=-\frac{1}{3}(x-1)$

b) Write the equation in slope-intercept form. What is the y-intercept of this line?

 $y = -\frac{1}{3}x + \frac{1}{3} + 1 = -\frac{1}{3}x + \frac{4}{3}$ ses through S(2, -3) and is: y int; (0, 4/3)

Example: Write an equation for the line that passes through S(2, -3) and is:

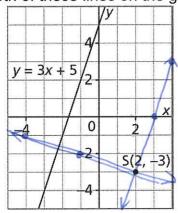
- a) parallel to the line y = 3x + 5same stope = 3
 - i) in point-slope form

$$y+3=3(x-2)$$

b) perpendicular to the line y = 3x + 5

neg. reciprocal slope: - 1/3

i) in point-slope form


$$y-2=-\frac{1}{3}(x+2)$$

ii) in slope-intercept form

y+3-3x-6 y=3x-9 ii) in slope-intercept form

$$y = -\frac{1}{3}x - \frac{2}{3} + 2$$
 $u = -\frac{1}{2}x + 4$

b) Sketch both of these lines on the grid below:

Example: Write an equation for the line that passes through D(-5,-3) and is:

a) parallel to the line
$$y = \frac{4}{3}x + 1$$

$$y+3 = \frac{4}{3}(x+5)$$

b) perpendicular to the line
$$y = \frac{4}{3}x + 1$$

$$y+3 = \frac{-3}{4}(x+5)$$

Example: Write an equation for the line that has x-intercept 4 and is perpendicular to the line

$$y=-\frac{2}{5}x-6.$$

$$y-0=\frac{5}{2}(x-4)$$

$$y = \frac{5}{2}(x - 4)$$