Using the Primary Trigonometric Ratios to Find Sides

Warm Up:

Solve for x. Round answers to 2 decimal places where appropriate.

a)
$$\frac{10^{\circ}}{\cos 60^{\circ}} = \frac{x}{10}$$

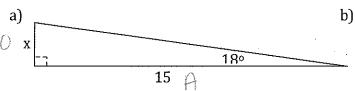
b)
$$\int \tan 45^{\circ} = \frac{x}{15}$$

c)
$$\sin 65^{\circ} = \frac{48}{x}$$

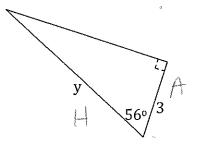
$$X = 10.00860$$

$$X = 50$$

$$X = 15$$


$$Sin 65^{\circ} Sin 65^{\circ}$$

$$X = \frac{48}{\sin 65^{\circ}}$$


$$X = 52.96$$

Last class we learned how to use the primary trigonometric ratios to solve for a missing angle in a right triangle. We can easily extend that knowledge to solve for a missing in a right triangle.

Solve for the missing side. Round answers to 2 decimal places where appropriate. Example:

$$X = 4.87$$

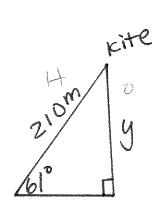

$$y \cdot \cos 56 = 3 \%$$

$$y = \frac{3}{\cos 56}$$
 = 5.36

Determine the length of XY to the nearest tenth of a centimetre Example:

Example:

From a radar station, the angle of elevation of an approaching airplane is 32.5°. The horizontal distance between the plane and the radar station is 35.6 km. How far is the plane from the radar station to the nearest tenth of a kilometre?

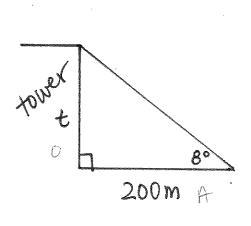

 $\times \cos 32.5^{\circ} = 35.6$

$$\frac{x \cos 32.5^{\circ} = 35.6}{\cos 32.5^{\circ}} = \frac{35.6}{\cos 32.5^{\circ}}$$

$$x = \frac{35.6}{\cos 32.5^{\circ}} = 43.05 \text{ km}$$

$$x = \frac{35.6}{\cos 32.5^{\circ}} = 43.05 \text{ km}$$

A kite is flown with 210 m of string. The angle of elevation of the kite is 61°. How high Example: is the kite to the nearest tenth of a metre?



Fite 210 $\sin 61^\circ = 4.210$ 10 $y = 210 \sin 61^\circ$

$$y = 183.7m$$

Example:

At a horizontal distance of 200 m from the base of an observation tower, the angle between the ground and the line of sight to the top of the tower is 8°. How high is the tower to the nearest metre?

t=28.1m