\qquad

Review: Roots and Powers

- Demonstrate an understanding of irrational numbers by representing, identifying, simplifying and ordering irrational numbers.

1. Sort the following numbers into rational and irrational numbers:

$$
\sqrt{4}, \frac{2}{3}, \sqrt[3]{85}, 8 . \overline{23}, \sqrt{\frac{64}{121}}, \sqrt[4]{32}, \sqrt[3]{\frac{16}{25}}, 6.23123112311123 \ldots .,-\sqrt{0.81}, 0.75
$$

2. Estimate (without a calculator) the value of the given irrational numbers to one decimal place.
a) $\sqrt{45}$
b) $\sqrt[3]{75}$
3. Arrange the following irrational numbers from least to greatest. $\sqrt{22}, \sqrt[3]{-50}, \sqrt[3]{\frac{4}{5}}, \sqrt[4]{12}, \sqrt{\frac{1}{3}}$
4. Draw a diagram showing how the following number systems are related: Real numbers, rational numbers, irrational numbers, integers, whole numbers, and natural numbers.
5. Simplify each radical without a calculator.
a) $\sqrt{45}$
b) $\sqrt[3]{256}$
c) $\sqrt[4]{1250}$
6. Write each as an entire radical without a calculator.
a) $6 \sqrt{5}$
b) $3 \sqrt[3]{2}$
c) $2 \sqrt[4]{9}$
7. a) Express the side length of a square, with area $252 \mathrm{ft}^{2}$, as a radical in simplest form.
b) Determine the perimeter of that square as a radical in simplest form.

- Demonstrate an understanding of powers with integral and rational exponents.

8. Using patterns, explain why $a^{-n}=\frac{1}{a^{n}}, a \neq 0$.
9. Evaluate each power without a calculator.
a) $16^{\frac{1}{2}}$
b) $8^{\frac{4}{3}}$
c) $-\left(\frac{4}{25}\right)^{\frac{3}{2}}$
d) $0.36^{1.5}$
10. Write each radical as a power.
a) $\sqrt{8^{3}}$
b) $(\sqrt[3]{-1.5})^{2}$
c) $\left(\sqrt{\frac{1}{8}}\right)^{5}$
11. Here is a student's solution for evaluating a power. Identify the errors the student made. Write a correct solution.

$$
\begin{aligned}
1.96^{\frac{3}{2}} & =(\sqrt[3]{1.96})^{2} \\
& =(1.2514 \ldots)^{2} \\
& =1.5661 \ldots
\end{aligned}
$$

12. Evaluate each power without a calculator. Do not leave decimals in your answers.
a) $4^{-\frac{1}{2}}$
b) $(-7)^{-2}$
c) $\left(\frac{1}{5^{-3}}\right)$
d) $(-0.027)^{-\frac{2}{3}}$
e) $\left(-\frac{64}{125}\right)^{-\frac{5}{3}}$
f) $32^{-0.4}$
13. Simplify. Do not leave negative exponents in your answers.
a) $\left(a^{5} b\right)\left(a^{4} b^{-9}\right)$
b) $\left(\frac{a^{2}}{b^{3}}\right)^{-4}$
c) $\left(3 x^{-2} y^{4} z\right)^{3}$
d) $\frac{-9 a^{-4} b^{\frac{3}{4}}}{3 a^{2} b^{\frac{1}{4}}}$
e) $\left(-\frac{3}{8}\right)^{\frac{2}{3}} \cdot\left(-\frac{3}{8}\right)^{-\frac{1}{3}}$
f) $\left(\frac{-64 a^{6}}{b^{-9}}\right)^{\frac{1}{3}}$
14. Identify any error(s) in this solution for simplifying an expression. Write a correct solution.

$$
\begin{aligned}
\left(\frac{5 a^{2}}{b^{\frac{1}{2}}}\right)^{-2} & =\frac{-10 a^{-4}}{b^{-1}} \\
& =\frac{-10 b}{a^{4}}
\end{aligned}
$$

