The Sum of an Arithmetic Series - Part 2

By substituting the formula $t_n = a + (n-1)d$ into the formula $S_n = \frac{n}{2}(a + t_n)$, we can generate a second formula for S_n :

$$S_{n} = \frac{n}{2} (a + a + (n-1)d)$$

$$S_{n} = \frac{n}{2} (2a + (n-1)d)$$

This formula can be used to solve problems involving linear systems (Chapter 7).

Example: The sum of the first 2 terms of an arithmetic series is 6 and the sum of the first 5 terms is 45. Determine the first 5 terms of the series.

$$S_{2}=6$$
 and $S_{5}=45$
 $n=2$

$$\frac{2}{2}(2a+(2-1)d)=6$$

$$\frac{5}{2}(2a+(5-1)d)=45$$

$$2a+d=6$$

$$\frac{5}{2}(2a+4d)=45$$

$$A \text{ system of linear equations}$$

choose substitution:

$$d=6-2a < 6$$

$$5a+10(6-2a)=45$$

$$5a+60-20a=45$$

$$60-15a=45$$

$$-15a=-15$$

$$a=1$$

$$d=6-2(1)$$

1,5,9,13,17

Example: The sum of the first 9 terms of an arithmetic series is 216 and the 4th term is 20. Determine the first 3 terms.

$$S_q = 21b$$
 $t_4 = 20$
 $N = 9$
 $9(2a + (9-1)d) = 21b$
 $9(2a + 8d) = 21b$
 $9(2a + 8d) = 21b$
 $9a + 36d = 21b$

$$a+(4-1)d=20$$
 $a+3d=20$
 $a=20-3d$

$$9(20-3d) + 36d = 216$$

 $180-27d + 36d = 216$
 $180+9d = 216$
 $9d = 36$
 $d = 4$

$$a = 20 - 3(4)$$
 $a = 8$

First 3 terms: 8,12,16