Compound Interest and the TVM Solver

Compound interest is when the interest earned is added to the original amount invested more frequently, and so you earn more interest.

$$
\text { Note: } \begin{aligned}
& \text { Annually }=1 \text { time per year } \\
& \text { Semi-annually }=2 \text { times per year } \\
& \text { Quarterly }=4 \text { times per year } \\
& \text { Bi-weekly }=26 \text { times per year } \\
& \text { Daily }=365 \text { times per year }
\end{aligned}
$$

TVM SOLVER: You can use this program in a graphing calculator to calculate compound interest.

* To start press: APPS - Finance - TVM Solver
* Enter the following values

N = total \# of payments
$\mathrm{I}=$ annual interest rate (as a percent)
$\mathrm{PV}=$ present value
PMT = payment each period
Both are entered as negative values
$\mathrm{FV}=$ future value
PY = \# of payments per year
CY \# of compounding periods per year
BEGIN (Always use BEGIN for investments, and END for loans)

* To finish, highlight the wanted value and press: ALPHA - ENTER

Example 1: Calculate the future value when $\$ 5000$ is invested at 6.5% per annum (per year) compounded semi-annually for 8 years.

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

Example 2: How long will it take $\$ 3000$ to double if it is invested at 4.5% p.a. (per annum) compounded monthly?

$\mathrm{N}=$	FV $=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

Example 3:How much must be invested at 6.8\% p.a. compounded quarterly in order to have \$10 000 after 5 years?

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

Compound Interest and the TVM Solver - Assignment

1. Use the TVM Solver to calculate the amount (Future Value) of the following investments:
a) $\$ 1000$ invested at 6% per annum compounded semi-annually for 5 years.
b) $\$ 800$ invested at 4.8% per annum compounded semi-annually for 3 years.
c) $\$ 600$ invested at 8% per annum compounded quarterly for 3 years.
d) $\$ 1200$ invested at 6.8% per annum compounded quarterly for 10 years.
e) $\$ 2500$ invested at 12% per annum compounded monthly for 4 years.
f) $\$ 10000$ invested at 5.4% per annum compounded monthly for 8 years.

a)	$\mathrm{N}=$	$\mathrm{FV}=$	b)	$\mathrm{N}=$	$\mathrm{FV}=$
	$\mathrm{I}=$	PY =		$\mathrm{I}=$	PY =
	$\mathrm{PV}=$	$\mathrm{CY}=$		$\mathrm{PV}=$	$\mathrm{CY}=$
	PMT $=$	BEGIN		PMT $=$	BEGIN
c)	$\mathrm{N}=$	$\mathrm{FV}=$	d)	$\mathrm{N}=$	$\mathrm{FV}=$
	$\mathrm{I}=$	PY =		$\mathrm{I}=$	PY =
	$\mathrm{PV}=$	$\mathrm{CY}=$		$\mathrm{PV}=$	$\mathrm{CY}=$
	$\mathrm{PMT}=$	BEGIN		$\mathrm{PMT}=$	BEGIN
e)	$\mathrm{N}=$	$\mathrm{FV}=$	f)	$\mathrm{N}=$	$\mathrm{FV}=$
	$\mathrm{I}=$	PY =		$\mathrm{I}=$	PY =
	$\mathrm{PV}=$	$\mathrm{CY}=$		$\mathrm{PV}=$	$\mathrm{CY}=$
	PMT $=$	BEGIN		$\mathrm{PMT}=$	BEGIN

2. Use the TVM Solver to determine the following times. Answer in years.
a) How long will it take an investment of $\$ 1000$ to reach $\$ 1200$ at 6.5% p.a. compounded monthly?
b) How long will it take for an investment of $\$ 5000$ at 5.6% p.a. compounded quarterly to double in value?
c) How long will it take for an investment of $\$ 10000$ at 9.5% p.a. compounded semi-annually to triple in value?
d) How long will it take for an investment of $\$ 3000$ at 8.2% p.a. compounded annually to reach $\$ 5000$?

a) \quad| $\mathrm{N}=$ | |
| :--- | :--- |
| | $\mathrm{I}=$ |
| $\mathrm{PV}=$ | |
| | $\mathrm{PMT}=$ |

FV =
$P Y=$
$\mathrm{CY}=$
BEGIN
b)
$\mathrm{FV}=$
PY =

$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$

PMT $=\quad$ BEGIN

c) | $\mathrm{N}=$ | $\mathrm{FV}=$ |
| :--- | :--- |
| $\mathrm{I}=$ | $\mathrm{PY}=$ |
| $\mathrm{PV}=$ | CY $=$ |
| $\mathrm{PMT}=$ | BEGIN |

d)

$\mathrm{N}=$	$\mathrm{FV}=$
$\mathrm{I}=$	$\mathrm{PY}=$
$\mathrm{PV}=$	$\mathrm{CY}=$
$\mathrm{PMT}=$	BEGIN

3. Use the TVM Solver to determine the original amount (Present Value) invested.
a) How much must be invested at 3.5% p.a. compounded semi-annually in order to have $\$ 5000$ after 8 years?
b) How much must be invested at 4.1% p.a. compounded bi-weekly in order to have $\$ 2000$ after 3 years?
a) $\quad \mathrm{N}=$
$\mathrm{FV}=$
I =
$\mathrm{PY}=$
PV =
PMT $=$
$\mathrm{CY}=$
BEGIN
b) $\begin{array}{lll}\mathrm{N}= & \text { FV }= \\ \mathrm{I}= & \text { PY }= \\ \mathrm{PV}= & \text { CY }= \\ \mathrm{PMT}= & \text { BEGIN }\end{array}$

| Answers: | 1. a) $\$ 1343.92$ b) $\$ 922.34$ c) $\$ 760.95$ d) $\$ 2355.15$ e) $\$ 4030.57$ | f) $\$ 15388.43$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 2. a) 2.8 yrs b) 12.46 yrs c) 11.84 yrs d) 6.48 yrs
 3. a) $\$ 3788.08$ b) 1768.70 | |

